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ABSTRACT

Software evolution in third-party libraries across version upgrades

can result in addition of new functionalities or change in existing

APIs. As a result, there is a real danger of impairment of

backward compatibility. Application developers, therefore, must

keep constant vigil over library enhancements to ensure application

consistency, i.e., application retains its semantic behavior across

library upgrades. In this paper, we present the design and

implementation of POLLUX, a framework to detect application-

affecting changes across two versions of the same dependent non-

adversarial library binary, and provide feedback on whether the

application developer should link to the newer version or not.

POLLUX leverages relevant application test cases to drive execution

through both versions of the concerned library binary, records

all concrete effects on the environment, and compares them to

determine semantic similarity across the same API invocation for

the two library versions. Our evaluation with 16 popular, open-

source library binaries shows that POLLUX is accurate with no false

positives and works across compiler optimizations.

CCS Concepts

•Software and its engineering → Software maintenance tools;

Software testing and debugging; Dynamic analysis; Software

evolution; Software libraries and repositories;

Keywords

Software maintenance, Library upgrade, Dynamic binary analysis.

1. INTRODUCTION
In current times, library driven software development is a reality

and use of third-party libraries is central to the development of

a large number of applications. However, this software reuse

comes at a cost—the included libraries can severely impact the

maintainability of software systems. Evolution of third-party

libraries may not always ensure backward compatibility, and

may introduce new functionalities altering existing APIs across

∗
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(47) (48) static void dump(double value, string &out){

(48) - char buf[32];

(49) - snprintf(buf, sizeof buf, "%.17g", value);

(50) - out += buf;

(49) + if (std::isfinite(value)){

(50) + char buf[32];

(51) + snprintf(buf, sizeof buf, "%.17g", value);

(52) + out += buf;

(53) + }else {

(54) + out += "null";

(55) + }

(51) (56) }

Figure 1: Dropbox’s minor fix [6] could break applications.

major upgrades. Thus, developers must keep constant vigil over

library enhancements to ensure application consistency, i.e., the

application retains its semantic behavior across library upgrades.

A seven year study [44] of library release history in Maven

Central, involving 150K binary JAR files, revealed that one third

of all releases introduced at least one change that broke backward

compatibility. This figure remained unaffected whether the library

release was a major or a minor upgrade. Thus, choosing to update

the library dependencies of an application is a double-edged sword,

and demands thorough assessment of the effort needed to update

the dependencies and the potential benefits achieved by updating.

For example, according to the JSON standard the values NaN

and Infinity should be serialized to null. However, Dropbox’s

json11 library, which provides JSON parsing and serialization,

used snprintf in its dump function to emit a string that was not

compliant with the JSON standard. Thus, a minor fix as shown

in Fig. 1, emitted significantly different JSON output for several

applications, potentially breaking some functionality. This paper

tackles the problem of whether a developer can safely upgrade a

dependent library without affecting application functionality.

Prior work [30, 41, 43–45] has acknowledged the importance of

dependencies in software management, and has empirically studied

the effects of “update lag”, “freshness”, “quality”, and “popularity”

on dependency management. Teyton et al. [47] study library

upgrades for JAVA software, but focus entirely on reasons and

frequency of upgrades. However, none of the prior work focuses

on the application developer’s dilemma of whether library upgrades

would break critical application functionalities. Also, most prior

work rely on the analysis of source code, which may not even be

available for several third-party libraries.

In this work, we present POLLUX, a framework that detects

application-affecting changes across two versions of the same

library binary, and provides feedback on whether the application

developer should link to the newer version. POLLUX builds upon

the observation that any critical, functionality-affecting API change

in the newer version would manifest as a new or distinct concrete

effect, such as memory writes and system calls. In absence of
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any such differences, the API invocation in the newer version is

semantically similar to the older version. In other words, if the

test cases elicit the same concrete effects upon invocation of the

APIs across both versions, the execution is functionally similar;

thus migrating to the newer version will not impact the application.

POLLUX leverages relevant application test cases (or the

exhaustive library test suite, if it is open source) to drive execution

through both versions of the concerned library binary, and records

all concrete effects on the environment. POLLUX then uses a

custom algorithm to compare these effects and determines the

behavioral similarity across the same API invocation for the two

library versions. In case of any dissimilarity, POLLUX lists the

offending API call (in the newer version). While POLLUX is

generic and applicable to all binaries, it is specific to libraries in the

way that it assumes consistency of API interfaces across releases.

POLLUX is not a binary differencing tool; its goal is to detect

semantic incompatibilities resulting from library upgrades. Note

that POLLUX’s effectiveness is contingent upon the exhaustiveness

of the test suite that drives it. Test suite expansion will

monotonically increase the differentials discovered by POLLUX.

Further, any code path either added, removed or modified, if not

traversed by the test suite, will result in POLLUX missing the

changes. In general, determining behavioral differences across

binaries is challenging for two major reasons. First, binaries

might be obfuscated or compiled with separate optimization

levels (say -O0 and -O3) resulting in different binaries. Thus,

graph isomorphism based techniques relying solely upon structural

similarities in control flow also fail in light of these optimizations.

Second, issue of scalability is ever present. Static and symbolic

execution techniques perform precise semantic analysis, but suffer

from issues of scaling to large binaries.

POLLUX overcomes these challenges using a path-sensitive

dynamic binary analysis technique to identify behaviorally similar

code segments in a library binary. Specifically, POLLUX generates

a dynamic call graph for all library functions traversed during each

library API invocation for both versions of the library. It then

populates each node in the call graph with metadata to reflect

concrete effects of execution associated with that function call, i.e.,

writes to stack and heap, and system calls observed during that

specific function invocation. POLLUX aggregates these concrete

effects into a function signature, i.e., a minimal set of concrete

effects uniquely identifying the function invocation even across

multiple executions for the same given inputs.

POLLUX leverages these function signatures to correlate similar

functionality traversed during the API execution across the two

library binaries. Any pair of non-matching function nodes

indicates changes in either structural (i.e., code refactoring) and/or

semantic functionality across the two binaries. POLLUX collates

all such functionality changes for the given application library and

notifies the application developer what specific API functionality is

affected by linking to the newer library binary.

We have implemented a prototype of POLLUX for x86 binaries

using Intel’s PIN dynamic binary instrumentation framework [18,

39]. We have applied it to 16 popular, open-source libraries, and

our evaluation shows that POLLUX correctly identifies semantic

differences with no false positives for libraries under consideration.

POLLUX’s core signature extraction algorithm reports a precision

of > 99% on call graphs generated for library APIs corresponding

to adjacent versions for all 16 open-source libraries.

This paper makes the following contributions:

(1) We provide a practical design (§ 4) for POLLUX along with

its novel dynamic binary analysis framework, which is robust,

accurate, and precise.

(1) int main() {

(3) int *ptr;

(4) ptr = (int*)malloc(sizeof(int));

(10) *ptr = 25;

(11) printf("%d", *ptr);

(12) free(ptr);

(13) return 0;

(14) }

Figure 2: Example source code.

(1) push %rbp

(2) mov %rsp,%rbp

(3) sub $0x10,%rsp

(4) mov $0x4,%edi

(5) callq 400510 <malloc@plt>

(6) mov %rax,-0x8(%rbp)

(7) mov -0x8(%rbp),%rax

(8) movl $0x19,(%rax)

(9) mov -0x8(%rbp),%rax

(10) mov (%rax),%eax

(11) mov %eax,%esi

(12) mov $0x400709,%edi

(13) mov $0x0,%eax

(14) callq 4004e0 <printf@plt>

(15) mov -0x8(%rbp),%rax

(16) mov %rax,%rdi

(17) callq 4004c0 <free@plt>

(18) mov $0x0,%eax

(19) leaveq

(20) retq

(21) nopw 0x0(%rax,%rax,1)

(a) Example compiled w/ gcc -O0.

(1) push %rbx

(2) mov $0x4,%edi

(3) callq 400520

<malloc@plt>

(4) mov $0x19,%edx

(5) mov %rax,rbx

(6) movl $0x19,(%rax)

(7) mov $0x400719,%esi

(8) mov $0x1,%edi

(9) xor %eax,%eax

(10) callq 400530

<__printf_chk@plt>

(11) mov %rbx,%rdi

(12) callq 4004e0 <free@plt>

(13) xor %eax,%eax

(14) pop %rbx

(15) retq

(b) Example compiled w/ gcc -O3.

Figure 3: Example code depicting challenges in binary analysis.

(2) We implement POLLUX (§ 5) for x86 binaries and evaluate

it (§ 6) on 16 open-source libraries to show its effectiveness in

determining functional similarity across library versions.

2. MOTIVATION AND OVERVIEW
In this section, we motivate the need for POLLUX. First,

we discuss two concrete scenarios describing the possible

incompatibilities arising due to library upgrades. Second, we

discuss the issues involving precise binary analysis that make the

problem of detecting semantic differences challenging.

(1) libxml crash: libxml v2.7.6 encountered a segmentation fault

with the upgraded zlib v1.2.3.5 because of a complete re-write

of the gz* APIs, which read and write gzip files [13]. The fix to

libxml is to check the version of zlib and to use the current code for

ZLIB_VERNUM less than 0x1230. However, since both libxml and

zlib are widely deployed and numerous applications link to them

dynamically, older versions of libxml and also other applications,

without this fix, will fail with newer versions of zlib.

(2) Winamp crash: Winamp v5.666 build 3516 crashed due to a

buggy component plugin (in_mp3.dll) [24]. The bug in the newer

version of the plugin was an unintended consequence of fixing an

older bug in the metadata editor. The proposed solution involved

roll back of the plugin to build 3512.

The above examples highlight two issues commonly observed in

software evolution. First, dependent API changes cascade all the

way down to the application, which might crash if the appropriate

changes are not handled gracefully. Second, feature enhancements

in third party components, specially libraries and plugins, can

easily introduce bugs leading to software crashes.

While newer technologies, like Docker [5], do remedy problems

introduced by dependencies, they are, aimed primarily for software

distribution alone. The core “dependency” issues (as discussed

above) still remain unsolved in the context of system software,

thereby motivating the need for POLLUX, which provides feedback
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to the developer on whether a dependency upgrade would affect or

preserve the application’s semantic behavior.

KEY CHALLENGES. Precise analysis of generic software binaries

poses several major challenges [37].

• Binary formats do not strictly differentiate between code and

data making their analysis difficult. Moreover, function boundaries

are not well-marked because return instructions are not mandatory.

• Binaries lack rich data types available in the source, and may

also lack symbolic information in release versions. Symbols and

types can otherwise be used to improve precision of the analysis.

• Modern microprocessor instruction sets are large and complex,

and many instructions have subtle differences, which, if ignored,

can make an analysis unsound. In addition, presence of indirect

jumps that calculate targets on-the-fly, and overlapping instructions

that get resolved at runtime can make the analysis incredibly hard.

• The basic purpose of call and ret instructions is to execute

a function call and a return, respectively. However, their usage to

perform indirect jumps is abusive and can confuse the analysis.

• Lastly, some machine architectures allow self-modifying

assembly code that can overwrite earlier code at the same address.

Thus, the actual instructions executed may not be even present in

the static disassembly of the binary.

OVERVIEW. Consider the example code shown in Fig. 2 where

memory is allocated for an integer, updated to the value 25, and

finally deallocated. The compiled output under optimizations -O0

and -O3 are shown in Fig. 3a and 3b, respectively. Despite

significant syntactic differences among the two versions, writes

to memory such as movl $0x19, (%rax) and system calls

(malloc, printf, and free) are preserved along execution

paths. POLLUX computes the signature of each function invocation

in an execution of the program by capturing the set of memory

writes and system calls performed by the function. The write set is

a singleton set containing write of 25 to an address stored in %rax

register. The set does not change across compiler optimizations,

the optimizations can be thought of as idempotent operations with

respect to the function signature set. POLLUX traverses through the

call graph obtained from a program execution and performs the said

activity repeatedly. At the end of the analysis, if no two function

nodes are found to be behaviorally dissimilar, POLLUX declares the

two versions to be behaviorally similar.

3. FORMAL OVERVIEW
A software binary can be considered to be a finite set of ordered

pairs of inputs and execution traces (where trace is a sequence of

events executed under the input; formal definition of a trace is

presented in the ensuing text). Let this set be denoted by B. For

the purposes of this paper, the regression test suite or applications

invoking libraries-under-test (LUT) define the domain of the input

set, denoted by I. Thus, for each input, i ∈ I, we denote a set of

execution traces of the program to be Bi := {τ |〈i, τ〉 ∈ B}. Such

a definition subsumes alterations to the program via semantically

equivalent code refactorings, compiler optimizations, speculative

out-of-order execution semantics of the hardware and (in the case

of concurrency) runtime scheduling. The set of all traces is denoted

by T . For each execution trace, an output value is produced. Since

I and T are finite sets and assuming programs to be deterministic,

the set of output values is also finite.

Given two binaries B, B′ of a software and a fixed regression

suite I, we wish to discover whether for each b := 〈i, τ〉 ∈ B
(where i ∈ I, τ ∈ T ) there exists a b′ := 〈i, τ ′〉 ∈ B′ (where

i ∈ I, τ ′ ∈ T ′), such that b and b′ have the same output and same

state of system memory. This is commonly referred as input-output

equivalence in the literature. There are a few scenarios relating to

the above discussion that are relevant to the context of our problem

i.e., differential analysis of libraries:

(1) output of b and b′ is same for a given i and τ = τ ′, then clearly

semantics have remain unchanged across the two versions,

(2) output of b and b′ is same for a given i, however τ 6= τ ′, then

it mandates further analysis; while it is possible that the output of

two traces is equivalent, the side-effects of traces may differ leading

to different states of the system memory, altogether. Discovering

precise side-effects is a hard problem in the average-case, while

undecidable in the worst-case setting, and

(3) output of b and b′ is not same for a given i; in such a case the

application developer must be notified that it may not be entirely

safe to upgrade the LUT.

3.1 Concrete Semantics
We begin by defining a simple low-level language that captures

the essence of this work. The language uses pc as the program

counter (note that we interpret pc to be pointing to the location

of the instruction under execution), a finite set of integer registers

R = {r1, · · · , rn}, a store m[.] that returns the contents at the

memory location of the argument. The set of expressions in the

language is denoted by Exp. For simplicity, we do not specify the

expressions in this language, although the expressions are allowed

to contain pc,R, and m[.] The set of program statements is denoted

by Stmt. A statement s ∈ Stmt can be one of the following:

• a variable assignment, ri := e with ri ∈ R, e ∈ Exp,

• a memory access, m[e1] := e2 or r2 = m[e1] , e1, e2 ∈ Exp,

• a guarded jmp, jmp e1, e2, where e1, e2 ∈ Exp, which jumps

the pc to the address evaluated from e2 given the (guard) e1
evaluates to zero,

• a procedure call, p().

A state s of a program defined in the above language is given

by a triple: 〈M, l, fr〉 where M : 〈ρ, ζ〉 captures the state of

system’s memory. Function ρ : R → Z provides valuations to

the registers, ζ : N → Z provides the contents of the memory

addresses, l ∈ N is the current address at which the control is , and

fr = (xi, · · · , xmax−1) is the sequence of addresses indicating

the frame structure of the stack. xmax is the maximum address

to which stack can grow and xi is the least address on the stack

(stack grows downwards). A state transitions to a new state upon

the execution of a statement in the following manner:

T [[ri := e]](s) := s[ρ(ri) 7→ ρ([[e]](s))][l 7→ s(l) + 1]

T [[ri := m[e1]]](s) := s[ρ(ri) 7→ ζ([[e1]](s))][l 7→ s(l) + 1]

T [[m[e1] := e2]](s) := s[ζ([[e1]](s)) 7→ [[e2]](s)][l 7→ s(l) + 1]

T [[jmp e1, e2]](s) :=

{
s[l 7→ sl + 1] if [[e1]](s) 6= 0

s[l 7→ [[e2]](s)] otherwise

We assume that [[e]](s) is a deterministic evaluation function of

statement e in state s. T [[e]](s) is essentially a state transformer

function that produces a resultant state when statement e is

executed from state s. The map 7→ updates/adds specific

entries within a state. Finally, T [[q()]](s) is modeled by register

assignment statements modeling two important aspects of the

function call: stack frame allocation and deallocation. The body

of the procedure q is modeled by statements of the language. At

the time of allocation, the stack is extended by the frame size of

q(). Thus, for stack allocation:
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T [[rfp = rfp − c]](s) = s[ρ(xi) 7→ (ρ(xi)− c)(s)]

[f 7→ (xi − c, xi · · · , xmax−1)]

rfp is the register reserved for storing current frame pointer.

Similarly, after the execution of the body of the function, the

current stack frame at state s would be deallocated with fr :=
(xi − c, xi · · · , xmax−1):

T [[rfp = rfp + c]](s) = s[ρ(xi) 7→ (ρ(xi) + c)(s)]

[f 7→ (xi · · · , xmax−1)]

A trace τ of a program is a sequence of states s0, · · · sn−1 with

s0 as the start state. We assume that there exists function that maps

program behaviors to outputs, O : B → Z. We define the notion of

behavioral equivalence of two traces by the following definition:

Def. 3.1. Two traces τ, τ ′ are strictly-similar when on input i the

state of memory is equal at their final states sn, s
′
n, i.e.,sn(M) =

s′n(M) and O(b) = O(b′) where b = 〈i, τ〉 and b′ = 〈i, τ ′〉.

Although observing the output of a trace is self-evident,

observing the effects of a library code execution on system’s

memory is not straightforward. For instance, programs could

legitimately be writing addresses of memory locations as values

into registers or memory locations. Such memory-address writes

are bound to change even when the same program is executed

multiple times. On account of such complexity, we define the

notion of α-similarity of behaviors (as opposed to strict equivalence

as defined above). The motivation behind α-similarity is to

accommodate such address-based writes to registers/locations. Let

Wτ := {ζ[[e1]](s)|s
′, s ∈ τ, T [[m[e1] := e2]](s

′) = s} be the

multiset of values written into memory in the trace τ . Further,

let Wτ |q be the projection of writes performed by the procedure

q called in τ . Register writes are not taken into account since we

assume that often local or temporary values are written to registers.

Even if that were not the case, scalability of POLLUX’s analysis

demands that we drop tracking writes to registers (per § 4).

Def. 3.2. Two behaviors b, b′ from binaries B,B′, respectively, on

a given input i are α-similar when the following conditions hold:

O(b) = O(b′) and
|Wτ∩W

τ′ |

|Wτ∪W
τ′ |

= α.

We denote α-similarity of behaviors by a relational operator ≃α,

if b, b′ are α-similar then b ≃α b′. For a given input i, we abuse the

notation and apply it for traces τ ≃α τ ′ when behaviors are found

to be α-similar. Note that Def. 3.2 reduces to Def. 3.1 when α=1.

4. POLLUX

KEY IDEA. POLLUX relies on a key observation that any critical or

functionality affecting change in third-party code is accompanied

by corresponding side-effects, such as additional memory writes

or system calls. In other words, key semantic behavior, such

as memory writes external to the stack frame and system call

sequence, remains unchanged despite compiler optimizations.

POLLUX takes as input the two library binaries and a test suite

to drive execution of those binaries. For every test case, POLLUX

generates a call graph with additional metadata, characterizing the

signature for each function invocation. Next, POLLUX uses a

custom algorithm that analyzes the two execution traces to identify

semantically similar execution fragments. Execution segments that

do not match are reported to the developer.

4.1 Execution Driver
The execution driver executes the test suite for both versions

of the binaries. Specifically, it invokes the trace collector to

start recording the effects of execution of each test case in the

test suite. Once execution with the first binary is complete, the

execution driver (i) serializes the recordings to external storage,

(ii) dynamically links the test cases to second binary and executes

them, and (iii) signals the trace collector to start recording again.

4.2 Trace Collector
Out of the several possible function level features, such as count

of memory reads and writes, system calls, branching instructions,

and indirect jumps, only critical, functionality-preserving memory

writes and sequence of system call invocations remain unchanged

in face of different compiler optimizations (-O0 against -O3). This

unambiguity is because both these features abstract out all the

syntactic sugar (or operational mechanics), and are tightly linked to

the functionality (or semantics) itself. Hence, POLLUX uses these

two features to determine semantic similarity.

The trace collector is responsible for detecting and recording

these two effects upon each test case execution. While it may be

best to passively monitor these side-effects, it is not possible to do

so for all effects, like writes to the memory. Recording such effects

would entail instrumenting the entire execution environment,

which would be prohibitively expensive. Thus, POLLUX leverages

dynamic binary instrumentation for capturing effects of interest at

a fine-grained level. This instrumentation preserves the intended

execution effects of the binary, while also executing the hooks to

capture additional metadata.

While binary instrumentation frameworks provide both coarse-

and fine-grained hooks, POLLUX instruments the given binary at a

per-instruction level granularity, thereby sacrificing low execution

overhead in favor of high accuracy. For each instruction, POLLUX

records the x86 instruction, and the corresponding data/address

values. Thus, the instrumented binary upon execution enables

POLLUX to keep precise track of: (1) data/addresses written to

memory, with distinction between stack and heap, (2) system calls

invoked along with their arguments, (3) calls to other imported

library functions via the Procedure Linkage Table (plt), and (4)

function return values, if available. At the end of test suite

execution, the trace collector serializes the recorded values and

trace analyzer is invoked, which is described next.

4.3 Trace Analyzer
The trace analyzer takes as input the serialized recordings for

test suites corresponding to both library binaries, and determines

semantic similarity using a layered two phase analysis. First,

POLLUX deserializes each trace and creates a call graph with

each node decorated with function-level metadata corresponding

to memory writes and system call invocations. POLLUX then

computes a precise signature for each function using metadata

on memory writes and asynchronous system call invocations, and

matches these function call nodes across the two execution traces

for structural similarities based on (i) caller-callee relationship, and

(ii) potential code refactoring. Second, if no dissimilar call nodes

are observed, then POLLUX determines the execution sequences to

be semantically similar iff the sequences of synchronous system

call invocations observed across both the executions are same.

CALL GRAPH CONSTRUCTION. POLLUX determines call

context per instruction, and groups instructions with the same

context to build nodes in the call graph. Thus, while distinct

invocations of the same function generate distinct nodes in the call

graph, a recursive invocation generates a single node in the graph.
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GRAPH_MATCH(a, b, MatchSet)

Input: a,b : Call nodes in execution graph of current library.

MatchSet : Set of all matching node pairs.

Output: MatchSet : Set of all matching node pairs.

MatchSet = MatchSet ∪ {〈 a, b 〉};

Γa = Γa − Γb; Γb = Γb − Γa;

Ca = CHILDREN(a); Cb = CHILDREN(b);

foreach x ∈ Ca,y ∈ Cb: node_match(x,y) ∧ 〈 x, y 〉 6∈ MatchSet do
MatchSet = GRAPH_MATCH(x, y, MatchSet);

end

foreach x ∈ Ca : node_match(x, b) ∧ 〈 x, b 〉 6∈ MatchSet do
MatchSet = GRAPH_MATCH(x, b, MatchSet);

end

foreach y ∈ Cb : node_match(a, y) ∧ 〈 a, y 〉 6∈ MatchSet do
MatchSet = GRAPH_MATCH(a, y, MatchSet);

end

foreach x ∈ Ca,y ∈ Cb: 〈 x, - 〉 6∈ MatchSet ∧ 〈 -, y 〉 6∈ MatchSet do
〈 p, q 〉 = FIND(x, y);

MatchSet = GRAPH_MATCH(p, q, MatchSet);

end

FIND(a, b)

Input: a,b : Call nodes in execution graph for current library.

Output: O : Set of matching node pairs from the two graphs

Initialize: O = ∅.

if node_match∗(a, b) then O = O ∪ {〈 a, b 〉};

foreach x ∈ {a} ∪ CHILDREN(a), y ∈ {b} ∪ CHILDREN(b) do

if 〈 x, y 〉 6= 〈 a, b 〉 then O = O ∪ FIND(x, y);

end

GRAPH_SIMILARITY(r, r′, MatchSet)

Input: r,r’ : Root node in library L and L’, respectively.

MatchSet : Set of all matching node pairs.

Output: Res: Boolean variable for match or no match

Initialize: MatchSet = ∅, Res = false.

foreach 〈 a, b 〉 ∈ FIND(r, r′) do
MatchSet = MatchSet ∪ GRAPH_MATCH(a, b, MatchSet);

end

if |MatchSet| > tv ∧ Ωr = Ω
r′

then Res = true;

Algorithm 1: Match nodes with code refactoring.

4.3.1 Function-level Similarity

POLLUX constructs precise call graphs from deserialized

recordings using a shadow execution context, and updates

it on every new call instruction encountered in the trace.

Simultaneously, it populates the nodes in the call graph

with function-level metadata, such as writes to memory and

asynchronous system call invocations. POLLUX considers an

asynchronous system call equivalent to a memory write due to

its non-blocking nature. Additionally, it maintains graph-level

metadata that includes the exact sequence of synchronous system

calls. The key observation here is that asynchronous system calls

can be reordered with other operations, but synchronous calls must

occur in sequence. Thus, semantic similarity must ensure that the

sequence of synchronous system calls is preserved across both the

executions. Any out of order synchronous system calls, which are

blocking in nature (unlike an asynchronous call), could potentially

indicate a different behavior, and hence, is not semantically similar.

Algorithm 1 depicts the steps POLLUX uses to determine

function-level similarity across two call graphs. POLLUX leverages

node metadata to compute a signature for every function in the two

call graphs. It then uses the Sørensen-Dice index [20] (sv) and an

empirically determined threshold (θ) to determine a partial match

between two call nodes. POLLUX also considers code refactorings,

such as node splitting and inlining, while evaluating a function-

level match. Observe that Sørensen-Dice index is essentially an

instance of α−similarity as noted in Def. 3.2.

FUNCTION SIGNATURE. The signature of a function must (i)

be unique, and (ii) encapsulate semantic functionality. It follows

linearly from Def. 3.2 that function signature of procedures must

factor in the writes performed by it. It may not always be

possible to track writes (writes performed by system calls), hence

we conservatively treat asynchronous system call invocations as

writes. Thus, for procedure q, its function signature is:

Γq = Wτ |q ≈ 〈Ŵτ |q,Sq〉 (1)

where Ŵτ |q is the multiset of all the memory writes of q that are

observable, and Sq is the multiset of system call invocations in q.

The function signature for a specific call site, however, contains

values which are execution dependent, such as addresses generated

due to dynamic memory allocation; this introduces significant

problem in deterministically assigning function signatures that do

not fluctuate across repeated executions of the program. This

problem stems from the fact that at the instruction level, POLLUX

cannot distinguish between concrete data values and memory

addresses, and accumulates both of them in the same write set.

Keeping just the concrete data value and removing the addresses

from the set of all memory writes would eliminate significant

randomness in the function signature. Also, note that a function

must export values out of its scope to perform useful functionality,

which means the writes to function local variables result in no

critical semantic behavior. Thus, POLLUX leverages process maps

to determine address ranges for the current stack frame, and

discards all write values within this range. Subsequently, function

return values via the stack and registers (refer § 3) are not included

in the function signature. Prior work [34] also notes that return

values do not contribute significantly to the function signature.

SIGNATURE MATCH. A desirable signature matching scheme

must ensure (i) few or no false negatives, and (ii) low false

positives. However, an “exact” signature match solely from (1)

can potentially result in high false positives in case of compiler

optimizations, since these transformations may change the set of

concrete data values produced by the function. Thus, POLLUX

leverages a similarity-based match between the write sets generated

by two functions a and b, based on the Sørensen-Dice index:

sv = 2|Γa∩Γb|
|Γa|+|Γb|

, where set operators ∪,∩,+ are applied separately

to Ŵτ |x and Sq , x ∈ a, b. We consider α-similarity of functions

only when the index is greater than a certain threshold (θ ∈ R>0).

The caveat is that due to reliance on a threshold value, it is possible

that the value is not sufficiently high leading to false negatives (i.e.,

functions that should match but did not) or sufficiently low, leading

to false positives (i.e., functions that should not match but did).

POLLUX uses function names, if available, to further improve

the precision of the matching scheme. We observe that in a non-

stripped binary where the symbol names are present, overloaded

functions have different names. Furthermore, in C++, a function

name is a mangled version of its class hierarchy and its parameters,

which entails that every function name in the binary is unique.

Thus, in a non-adversarial setting where symbols may be present,

POLLUX utilizes the function names in addition to Sørensen-Dice

index to match functions across binary executions. Finally, it

is common for library developers to refactor code, i.e., inline or

outline functions, or split a function into several smaller units. Prior

art [27, 34, 49] has used function names as a heuristic in specific

cases and POLLUX can leverage any of these more sophisticated

techniques as its precision isn’t contingent upon function names.

Note that with such function splitting, matching with function

names is futile. In addition, the refactored functions make

Sørensen-Dice index ineffective, since the index is based on

function similarity rather than inclusion relationship. In such cases,

using Sørensen-Dice index may lead to several false negatives.

In order to make signature-matching more meaningful in the

context of inclusion relationship, we introduce a new index

tv = |Γa∩Γb|
min(|Γa|,|Γb|)

for functions a and b; this index, incidentally,
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also captures the results with the same precision as the Sørensen-

Dice index would have for cases where inclusion relationship was

absent. Thus, finally the node matching function is defined as:

node_match(a, b) =

{
true : tv ≥ θ
true : λa = λb ∧ θ′ < tv < θ
false : Otherwise

where λx returns the name of the function x. When tv < θ by a

small margin (i.e., θ−θ′ = 5%), then, function names are matched.

Refactoring suggests that our matching mechanism should be

capable of performing partial signature matches and also matches

with the remainder of the signatures after a partial match is

performed. In order to deal with partial matching and to maximize

structurally meaningful matching, POLLUX uses the notion of

residual signatures [42]. Specifically, whenever POLLUX matches

the signatures of two functions, it also updates their current

signatures with residual signatures (to be used for further matching)

as follows: Γa = Γa − Γb and Γb = Γb − Γa.

(1) Inlining/Outlining: Library functions are often inlined to

achieve better performance. A function that is inlined adds its

memory writes and asynchronous system calls data to its caller’s

signature, i.e.,if function a has its callee function b inlined in a

newer version, it will result in the following signature of the new

function: Γ
a
′ = Wτ |a ∪ Wτ |b. Similarly, a function that is

outlined as b in a newer version will have an opposite effect on

the signature of the counterpart of b’s caller function a as follows:

Γ
a
′ = Wτ |a−Wτ |b. The inclusion index tv captures this inclusion

relationship allowing nodes to be matched correctly.

(2) Splitting/Combining: To achieve stronger cohesion and better

maintainability, developers split functions. Splitting functions have

an impact on the signatures and matching which is similar to

outlining. More formally, when a function f that is split/combined

into/from n functions f1, . . . , fn, the following relation holds:

Γf = Wτ |f1 ∪ . . . ∪Wτ |fn .

EMPIRICAL THRESHOLD (θ). POLLUX randomly selects test

cases for APIs that remain unmodified across the two neighboring

versions of the library (corroborated by the commits), and

determines tv iteratively till the number of unmatched function

nodes across the call graphs (corresponding to the two library

executions) is less than 1%. In other words, at least 99% function

nodes must match at this tv . This final value of tv is the threshold θ.

The above iterative approach has the benefit that for most common

cases, θ reflects the lower bound of similarity between semantically

similar functions. Any value of tv ≤ θ that causes the number of

unmatched function nodes to increase above 1% indicates, with a

high probability, that the functionality has indeed changed.

4.3.2 Graph-level Similarity

In order to demonstrate similarity of two call graphs, POLLUX

additionally handles the case when there are blocking system calls

issued. It uses function Ωx = 〈si, . . . , sj〉 and si, . . . , sj is the

sequence of synchronous system calls observed in the execution.

4.4 Diagnosis
In case of dissimilar nodes, POLLUX traverses the function

signature to determine the cause as either an extraneous

data/address value or system call (or their order). In each case, the

application developer receives a feedback indicating the offending

API invocation, along with the entire call sequence leading up to

the function responsible for the unmatched data/address value or

system call that caused the dissimilarity.

COMPARISON WITH PRIOR ART. POLLUX’s signature for

matching functions across two execution graphs is robust and

effective (as will be shown later in § 6). Unlike prior art [33–35,42],

POLLUX leverages a layered approach to determining semantic

similarity, and uses only the most critical side-affecting features,

i.e., memory writes and system calls, which remain constant

even across various compiler optimizations. Like BLEX [34],

POLLUX also leverages dynamic binary analysis, but uses far fewer

features to create succinct signatures. Additionally, BLEX aims for

instruction coverage and generates random inputs for differential

analysis that is not path-directed, thereby exploring infeasible

paths and leading to several false positives. Unlike BinDiff [33]

and [35], which use graph isomorphism techniques, POLLUX does

not rely upon structural similarity and function names alone. Thus,

POLLUX’s signature built using dynamic mechanism is robust

even under various compiler optimizations. Unlike [42], where

a function signature includes all values read or written and are

humongous, POLLUX uses only concrete data values and system

call sequence to generate crisp function signatures.

4.5 Compiler Optimizations
Compiler optimization levels, such as -O3, are extremely

aggressive and typically generate an execution graph that is

significantly different from the one generated at level -O0. In fact,

optimization -O3 is akin to code refactoring at the assembly level.

However, no amount of optimization should alter the functionality

critical memory writes and sequence of system call invocations.

In the absence of any structural similarity, POLLUX discards

the function level signature matching and instead compares the

aggregate set of write, and sequence of system call invocations.

POLLUX leverages the index tv for comparison across optimization

levels. Since level -O3 discards several intermediate memory

writes, Γa ⊆ Γb for two binaries a and b compiled for the same

source code with levels -O3 and -O0 respectively. In other words,

tv ≈ 1 indicates semantic similarity between binaries a and b.

Note that POLLUX’s target is primarily application developers

who include benign, third-party libraries, and typically, developers

do not change compiler optimizations frequently for production-

level code. Thus, matching semantic similarity across optimization

levels is not the common case for POLLUX.

5. IMPLEMENTATION
We implemented a prototype of POLLUX based on the design

described in § 4. While the trace analyzer and collector were

automated and required ∼900 lines of C++ to implement, the

execution driver was triggered manually. We leveraged the Intel

PIN [18, 39] dynamic binary instrumentation framework (v2.14)

because of its ease of use in instrumenting the library binaries, and

recording execution side-effects. We wrote a minimal “pintool”,

which is code that the PIN framework injects dynamically at

selected points during instruction sequence, to extract relevant

execution metadata and build a call graph for the given execution.

(1) Call graph construction. In assembly, function transitions,

i.e., invocations and returns, happen via the call*, jmp* and ret

family of instructions. POLLUX maintains a shadow stack of call

context by leveraging PIN APIs to extract the function name at each

transition instruction. However, we observed that a few functions

did not have an explicit ret instruction, leading to anomalous call

graphs. POLLUX overcomes this challenge by discarding the use of

instruction-level instrumentation and switching to instrumentation

at the granularity of a TRACE
1. Since, a TRACE is part of exactly

1
A TRACE is a straight-line instruction sequence with exactly one entry

point. It usually ends with an unconditional branch, such as a call, return or
unconditional jump. However, a TRACE may include multiple exit points
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one function invocation, POLLUX invokes PIN APIs at the start

of each TRACE to determine the function name, which helps to

reliably maintain the shadow stack of call contexts. Note that PIN

cannot reliably instrument functions in the presence of tail calls or

when return instructions cannot reliably be detected [19]. Thus we

did not use PIN’s function-level instrumentation.

(2) Detecting writes to stack: Data values written to the stack

mostly correspond to non-critical function local operations. Hence,

it is important to discard them, so that the function signature

uniquely identifies only critical functionality. Thus, POLLUX

determines the address range available to the current process for

writing to the stack frame, and removes from its write set any

value written to an address within this range. To do so, POLLUX

determines the process id for the currently executing test case, and

reads the corresponding process maps from the /proc file system

to determine the permissible stack range.

POLLUX leverages several optimizations to speed up the overall

analysis and improve precision.

• TRACE-level instrumentation: Instruction instrumentation

incurs significant overheads (due to dynamic code injection before

every instruction for call graph construction), and also induces

anomalies in construction as discussed earlier. POLLUX’s use of

PIN’s TRACE-level instrumentation not only improves accuracy but

also reduces the number of instrumentation points, which speeds up

analysis by an order of magnitude.

• Pruning the call graph: POLLUX prunes the call graph for

faster analysis. Specifically, the call graph starts at the API entry

point and continues till the execution hits any glibc method

invocations, like those corresponding to memory allocation and

management, system calls, etc. The key observation here is that

glibc and other system libraries, like ldlinux, provide access

to fairly low-level functionalities to several system components,

which change much less frequently compared with application

libraries. Furthermore, a change in system libraries often

necessitates upgrading the entire system and its dependencies. Not

traversing the call graph before the API entry point and after the

glibc function invocations significantly reduces the size of the call

graph to be analyzed for semantic similarity.

• Improving signature precision: As explained in § 4.3.1,

POLLUX identifies function local writes to memory to remove noise

from the function signature. To further improve the signature,

POLLUX executes each test case twice (linked to the same library

binary), and takes an intersection between the side-effects observed

across the two executions. The intuition here is that functionality

preserving side-effects, such as writes and system calls, would

remain unaffected and be present in the intersection.

6. EVALUATION
In § 6.1, we evaluate POLLUX for accuracy of detecting

semantically relevant changes across several macrobenchmarks

consisting of user applications. In § 6.2, we determine the precision

of POLLUX’s signature matching algorithm. In § 6.3, we determine

the effectiveness of the various optimizations described earlier

in § 5. In § 6.4, we check POLLUX’s robustness across compiler

optimizations. Lastly, in § 6.5, we present our experiences with

POLLUX and demonstrate its utility in diverse conditions.

EXPERIMENTAL SETUP. All experiments were performed atop a

VM having 4 VCPUs at 2.50 GHz, provisioned with 8 GB of RAM,

and running 64 bit Ubuntu v12.04 with Intel PIN v2.14 installed.

as long as they are conditional. If PIN detected a branch to a location within
a TRACE, it will end the TRACE at that location and start a new TRACE.

DATA SET. We chose 16 popular, open-source C/C++ libraries

from GitHub repositories (see Table 1), and randomly selected

commit versions along with their test suites. We then manually

inspected source code and the release notes corresponding to

these commit versions and corroborated each such change. While

POLLUX’s analysis is entirely automatic, this manual involvement

to validate our results limits the number of libraries analyzed.

EMPIRICAL DETERMINATION OF THRESHOLDS. We

empirically determined the thresholds θ and θ′ for each library

(as described earlier in § 4.3). We observed that at θ = 0.95,

the fraction of unmatched nodes was < 1% across all libraries in

our data set. Higher value of θ means a stricter check and would

increase the fraction of unmatched nodes, while a lower value of θ
indicates a more relaxed check and would have fewer unmatched

nodes. Note that for a different corpus of libraries, θ might vary.

We further selected θ′ = 0.95 ∗ θ.

6.1 Accuracy
We determine POLLUX’s accuracy when one or more dependent

libraries for a user application have changed. We consider

POLLUX’s output as accurate if it correctly determines changes in

library code based on unmatched function nodes (< 1%) in the call

graphs and system call order, which must be preserved for semantic

similarity. We capture ground truth for the concerned scenarios

using commits from the open-source corresponding repositories.

We observe that barring a few security updates where code may

get removed, as in the Heartbleed bug [22], most bug patches and

feature enhancements either add new code or alter existing library

code syntactically. We leverage the library test suites since the

existing application test suites may not cover the entire gamut of

functionality and run the suite with the two different versions. If

the fraction of unmatched nodes is greater than 1% at θ = 0.95,

or there was a change in the system call order or count, POLLUX

concludes a semantic change in the existing library version.

Table 1 reports our results. We observe that POLLUX manages

to capture even subtle changes, such as in json11, where a mere 4
line change in the dump function (see Fig. 1) introduced significant

changes across several other API executions, leading to ∼7%
unmatched nodes across the test suite.

POLLUX correctly detects semantic changes in 28 out of the

30 scenarios tested. POLLUX reports false alarms for some

Capstone and Valijson test cases. On manual inspection of

the commit logs, we observed that the Capstone library did not

have a test case that traversed the modified code. Since POLLUX

leverages dynamic analysis, paths not traversed in the code are

not validated for semantic changes. Hence, POLLUX reported no

change in semantic similarity across the two Capstone versions.

In Valijson, we observed that the modified API introduced no

extra nodes. Furthermore, the code introduced only a conditional

statement, which was not traversed by any of the test cases, similar

to the Capstone:ppc scenario. Thus, POLLUX correctly reports

semantic similarity in each of the 30 cases, thereby having a 100%
accuracy for libraries under consideration.

6.2 Precision
We determine the precision of POLLUX’s function signature

matching algorithm under the setting where there are no semantic

differences for a given library API across the two versions. In such

a scenario, we define precision as: η = 1 − (n/N), where N is

the total number of nodes in the call graph, and n is the unmatched

nodes across the two versions of the library.

We select test cases for each library where the API does not

change semantically across the two versions. We corroborate this
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Table 1: POLLUX accuracy across patches, minor and major revision changes for various libraries at θ = 0.95. Note that POLLUX

detects a semantic change if unmatched nodes are >1% and system call order is not preserved. ∗ indicates all APIs in the test suite.

# Application Library API
Version / Commit # Nodes System calls

Detection
Old New Total Unmatched % preserved

1 ArmExec Capstone [1] arm 3.0.3 3.0.4 5095 90 1.766 ✗ ✓

2 ArmExec Capstone mips 3.0.3 3.0.4 1291 20 1.549 ✓ ✓

3 ArmExec Capstone ppc 3.0.3 3.0.4 1856 6 0.323 ✓ ✗

4 ArmExec Capstone x86 3.0.3 3.0.4 4045 177 4.376 ✓ ✓

5 ArmExec Capstone xcore 3.0.3 3.0.4 1233 31 2.514 ✗ ✓

6 Visual Studio Catch [2] ∗ 1.2.0 build 45 1.3.5 latest 26032 4432 17.025 ✓ ✓

7 Gazebo DevIL [4] ∗ 1.7.8:1f0d 1.7.8:7241 64 4 6.250 ✓ ✓

8 TensorFlow Eigen [7] ∗ 3.2.7 3.2.8 366 4 1.093 ✓ ✓

9 TensorFlow Eigen ∗ 3.2.7 3.2.8 3340 60 1.796 ✓ ✓

10 TensorFlow Eigen ∗ 3.2 3.2.8 251 81 32.271 ✓ ✓

11 Boost Fit [8] ∗ e3bf390 52b54cd 76 6 7.895 ✓ ✓

12 Boost Fit ∗ 52b54cd 66976be 230 11 4.783 ✓ ✓

13 SageMath GSL [9] ∗ 1.9 1.10 11932 354 2.967 ✓ ✓

14 SageMath GSL ∗ 1.9 2.0 11932 787 6.596 ✓ ✓

15 NodeJS http-parser [10] parse_url ab0b16 7d75dd 99 2 2.020 ✓ ✓

16 NodeJS http-parser execute ab0b16 7d75dd 71786 7161 9.975 ✓ ✓

17 Dropbox json11 [6] dump 019364 0e8c5b 534 41 7.678 ✓ ✓

18 Dropbox json11 parse 019364 0e8c5b 1077 74 6.871 ✓ ✓

19 CMake libarchive [11] ∗ 3.0.2 3.1.0 14991 8327 55.55 ✓ ✓

20 AlsaPlayer libcurl [3] ∗ 7.20.0 7.21.1 1372 250 18.222 ✓ ✓

21 AlsaPlayer libcurl ∗ 7.20.0 7.47.0 1008 396 39.286 ✓ ✓

22 Deluge libtorrent [12] ∗ 1.0 1.1 1459 554 37.971 ✓ ✓

23 Aisoy Onion [14] response_new c812b35 88a659 786 48 6.107 ✓ ✓

24 Quinoa PEGTL [16] ∗ 1.2.1 1.2.2 34010 3013 8.859 ✓ ✓

25 Quinoa PEGTL ∗ 1.1.0 1.2.2 25182 1535 6.096 ✓ ✓

26 CBDM spdlog [21] ∗ c7864ae e248895 1880 220 11.702 ✓ ✓

27 Puppet Valijson [23] ∗ b241b37 e9b5016 3343 17 0.509 ✓ ✗

28 OpenSSH zlib [25] ∗ 2689b c58f7a 1648 93 5.643 ✓ ✓

29 OpenSSH zlib ∗ 1.2.7 1.2.8 1278 85 6.651 ✓ ✓

30 OpenSSH zlib ∗ 1.2.5 1.2.8 1204 487 40.449 ✓ ✓
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Figure 4: Variation in POLLUX’s precision and other properties.

Table 2: POLLUX Precision with 16 libraries at θ = 0.95.

# Library
Version / Commit # Nodes

Precision
Old New Total Unmatched

1 Capstone b560c2 c508c4 56076 16 0.999
2 Catch ae5ee2c f895e0d 27753 0 1.000
3 DevIL 1.7.8:cdc3 1.7.8:c806 264 2 0.992
4 Eigen a1430dd 08e2e06 2323 11 0.995
5 Fit 953b721 ec7a043 2002 0 1.000
6 GSL 5c14 002f 13851 0 1.000
7 http-parser bee48 4e382f 72537 0 1.000
8 json11 a6a66 e1d5b 2395 0 1.000
9 libarchive 3.1.0:5818 3.1.2:19f2 15222 5 0.999

10 libcurl 3c2e e506 2652 0 1.000
11 libtorrent 1.0.9 1.1.0 4270 39 0.990
12 Onion d7eb5b7 801bb9b 4540 0 1.000
13 PEGTL 02ba 9e3b 44078 0 1.000
14 spdlog c0c5c01 a6a661e 587 0 1.000
15 Valijson 1ade1c5 b241b37 3343 17 0.995
16 zlib 1.2.7.2 1.2.7.3 1281 2 0.998

API similarity by inspecting commits to the library repository. We

run POLLUX for these test cases and measure the number of nodes

that match across the API call graphs for the two executions. We

observe that on average POLLUX reports a high precision (>0.99)

across all test cases (see Table 2). We also note that libtorrent

reports a high number of unmatched nodes, because the particular

test case downloads a file, and thus several operational parameters,

such as available network bandwidth and bytes downloaded,

change significantly across two execution traces, thereby causing

POLLUX to report the high number of unmatched nodes.

(1) Variation in precision with θ: We select five libraries from

our data set and plot the variation in POLLUX’s precision for

different values of θ = 0.85, 0.90, 0.95, and 1.00. Fig. 4a plots

the results. We observe that as θ increases, precision η decreases

because in a stricter setting fewer function nodes match.

(2) Frequency of node matches: We measure the frequency of

matches for nodes whose function signature matched to determine

the aggressiveness of POLLUX’s signature matching algorithm.

Fig. 4b plots the results for all libraries in our data set at θ = 0.95.

The y-axis in the graph starts at 99.5%. We observe that across

all libraries POLLUX correctly matches > 99.5% of nodes, which
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Table 3: Effect of pruning glibc nodes at θ = 0.95.

# Library
Version # Nodes (w/o opt.) # Nodes (w/ opt.) Savings

Old New Total Unmatched Total Unmatched (%)
1 GSL 5c14 002f 25966 0 13851 0 46.66
2 json11 a6a66 e1d5bc 7814 63 2395 0 69.35
3 Onion d7eb5 801bb 725 8 699 0 3.59
4 PEGTL 02ba 9e3b 53621 257 32706 0 39.01
5 zlib 1.2.7.2 1.2.7.3 1969 3 1281 2 34.94

Table 4: Effect of re-execution on signature size θ = 0.95.

# Library
Version/ Avg. Signature Size Savings

Commit w/o opt. w/ opt. (%)
1 Capstone b560c2 21.61 21.11 2.34
2 Eigen 3.2.7 52.37 43.62 16.72
3 Fit 9e132 17.81 16.13 9.42
4 Onion 801bb 17.51 15.43 11.90
5 libtorrent 1.0.9 22.14 20.82 5.96

Table 5: Effect of re-execution on precision at θ = 0.95.

# Library
Version # Total Unmatched Nodes Savings

Old New Nodes w/o opt. w/ opt. (%)

1 Eigen a1430 08e2e 2323 267 11 95.88
2 libarchive 5818 19f2 15222 1833 5 99.73
3 libtorrent 1.0.9 1.1.0 4270 1460 37 97.47
4 Onion d7eb5 801bb 4540 686 0 100.00
5 PEGTL 02ba 9e3b 44078 2161 0 100.00

indicates the effectiveness of the algorithm. Only Catch, Eigen,

libarchive and zlib had minuscule number of nodes with

multiple matches due to sparse or common function signatures.

(3) Variation in graph comparison time: We determine variation

in the match time with increase in nodes in the call graph. Fig. 4c

plots the results for all libraries, except GSL and libarchive,

at θ = 0.95. We observe that in general as the nodes increase,

the match time increases exponentially. However, both GSL and

libarchive show much higher matching times than normal,

which is possible since matching also depends on the structure of

the graph. Code refactoring can also alter the graph structure.

6.3 Effectiveness of Optimizations

(1) Pruning glibc nodes: We selected five libraries and executed

their entire test suites with and without this optimization enabled.

Table 3 lists the results. We observe that pruning glibc nodes

alone not only decreases the number of unmatched nodes, but also

significantly reduces the graph size by an average of ∼39% across

the five libraries under consideration.

(2) Library re-execution: We selected five libraries and executed

their test suites twice with POLLUX. We then took the intersections

of the signature values to determine the function fingerprints, and

subsequently the improvement in precision with and without this

optimization enabled. The rows in Tables 4 and 5 indicate that the

intersection of function signatures from two executions provides

significant savings, and reduces function signature by an average of

9.27% across the five libraries. Further, this optimization decreased

the unmatched nodes by > 95% across the libraries.

6.4 Compiler Optimizations
We run POLLUX against five library test suites dynamically

linked with corresponding libraries compiled with -O2 and -O3

compiler optimizations, and measure its effects on POLLUX’s

precision. Table 6 lists the results. We observe that even across

the two optimization levels, POLLUX retains reasonable precision

for most libraries except zlib. However, it drops significantly

from > 99% (per § 6.2) observed when determining semantic

similarity for binaries with the same optimization level. Note

that -O3 is an aggressive optimization level and includes function

inlining, unswitching loops, among others. Thus, θ = 0.95, which

Table 6: Effect of optimization on precision at θ = 0.95.

# Library
Version/ # Nodes Unmatched Precision

Commit -O2 -O3 nodes (-O2) (%)

1 http-parser 5651a 72455 72465 1786 97.54
2 json11 afcc8 7803 7855 250 96.80
3 libcurl 7.47.0 2652 2508 1252 52.79
4 Onion 51ceb 699 600 140 79.97
5 zlib 50893 1701 1262 1065 37.39

Table 7: tv across -O0 and -O3 compiler optimizations

# Library Version
Avg. Signature Size Signature

tv-O0 -O3 Intersection

1 Capstone d17fc 399613 226594 191841 0.847
2 Eigen 3.2.7 2598 2142 1990 0.929
3 Fit 9e132 30 30 30 1.000
4 http-parser 5651a 758369 442938 428776 0.968
5 json11 afcc8d 78758 10900 10663 0.978
6 libtorrent 508cc 4270 4069 3889 0.956
7 Onion 51ceb 2778 2364 2256 0.954
8 spdlog c6f8f 467 467 467 1.000
9 Valijson e9b50 435678 325634 320004 0.983

10 zlib 50893 1033231 522940 522265 0.999

indicates an error margin of just 5% in similarity, is insufficient

across optimization levels. We therefore need to recalibrate θ for

detecting semantic similarity across optimization levels.

We now briefly compare POLLUX’s effectiveness with

BinDiff [33, 35] and BLEX [34]. Since, BinDiff is a proprietary

tool, and BLEX’s source and binary are unavailable, we use

accuracy numbers available in [34]. Since POLLUX’s signature

matching is ineffective across huge structural changes, it leverages

mechanism as described in § 4.5 to detect semantic similarity

across optimization levels. Table 7 lists tv observed for 10 libraries

from our data set across -O0 and -O3 compiler optimization levels.

We observe that POLLUX determines semantic similarity with

96.1% accuracy on average across the 10 libraries. In contrast,

BLEX and BinDiff report an accuracy of ∼50% across the same

optimization levels (per [34]), thereby making POLLUX’s accuracy

comparable to both BLEX and BinDiff.

6.5 Case Studies

(1) json11: json11 is an open-source C++ library from Dropbox.

Commit 0e8c5ba fixes a bug where values like NaN and Infinity

were serialized to non-compliant values by snprintf causing the

deserializer to fail. The fix involved adding a condition which

would return null if the number failed the std::isfinite check.

Even this small fix resulted in an increase in the number of

unmatched nodes, especially in test cases concerning numbers. A

test case traversing the True branch of the conditional had 25 of

286 nodes (or 8.75%) left unmatched in the call graph. In contrast,

the False branch had 11 of 235 nodes (or 4.68%) left unmatched.

We observed that across the entire test suite, 1716 nodes were

generated, of which 125 were unmatched (or 7.28%). Also, a

change in the total number of nodes was observed only for test

cases that executed the changed code path.

(2) zlib: zlib is a hugely popular library used by git, rsync, libpng,

etc. Commit c58f7ab replaced unsafe functions like strcpy with

safer alternatives like snprintf. Such changes, wherein a function

has been replaced results in significantly different memory writes.

For example, the return values of the two functions (although

unused), are totally different. strcpy returns the destination

character array, while snprintf returns the number of bytes

written. Also, unlike strcpy, snprintf appends a NULL byte to

the buffer. POLLUX detects this change and reports 93 out of 1648
nodes (or 5.64%) as unmatched in the graph.

(3) http-parser: HTTP-Parser is a dependent library for NodeJS.

Commit 4e382f9 had only minor changes to the documentation
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and did not modify the source code. POLLUX generated a total of

72537 nodes for the entire test suite that match perfectly at θ =
0.95, thereby indicating semantic similarity.

Commit 7d75dd73 introduced support for Zone ID in IPv6 scoped

addresses in the http_parse_host API. Only one test case

(test_parse_url) in the entire test suite invoked this API. This

test case generated a total of 99 nodes of which 2 were unmatched

(2.02%) causing POLLUX to flag the change. For all other test

cases, a total of 72433 nodes were generated that matched perfectly

at θ = 0.95, thereby pin-pointing the modified API.

Commit 0097de changed the way the tokens are parsed by the

library’s http_parser_execute API. Across the test suite, 3
tests did not invoke this API and generated a total of 154 nodes

that matched completely. Further, 6 tests generated a total of 2337
nodes, 10 of which were unmatched (0.42%) causing POLLUX to

conclude that they did not traverse the affected code path. Lastly,

2 tests that traversed the changed code path, generated 6355 nodes,

of which 6300 were unmatched (99.13%) indicating changes to the

API. Further, decreasing θ to 0.9 caused all nodes to match.

(4) Capstone: Capstone is a disassembly framework popular in

the reverse engineering community. Commit c508c4a0 added

support for the Travis CI build system and did not affect the source

code. POLLUX reported a near perfect match across the entire test

suite. Of the 56076 nodes generated, only 16 were unmatched

(0.03%), indicating a trivial change.

Across a minor release upgrade from v3.0.3 to v3.0.4,seven cases

in the test suite had only 0.76% unmatched nodes indicating

insignificant changes to these modules. The remaining 5 test

cases for the ARM, MIPS, x86 and XCore modules generated

15350 nodes, of which 385 were unmatched (2.51%). All changes

except those in the PowerPC module were correctly detected by

POLLUX. Upon further inspection, we observed that additional

error checking conditions were introduced. However, the test

cases did not traverse this newly introduced code change and thus,

POLLUX reported a false positive for PowerPC.

7. LIMITATIONS AND FUTURE WORK

• POLLUX cannot handle multi-threaded interleaved executions.

This limitation stems from its design, which requires deterministic

comparison of side-effects resulting from individual test case

executions. In contrast, multi-threaded executions introduce

significant non-determinism in the set of captured side-effects.

• Since POLLUX leverages test suites for its dynamic binary

analysis, it cannot detect changes in code paths not traversed by

the test case. For example, POLLUX cannot detect bug patches that

comment out an entire code path, such as the OpenSSH bug [15],

where the vulnerable code in the client was completely disabled.

• Like prior work [33–35, 42, 50], POLLUX cannot reliably detect

semantic similarities where side-effects involve random numbers,

time of day, etc. However, in our observation, most critical features

in mature libraries do not involve significant randomness.

• POLLUX does not include writes to registers or stack in its

function signatures. Thus, it may miss values passed via stack or

when entire function computation leverages registers alone.

• There can be several programmatic ways to encode the desired

functionality. For example, a multiplication operation might be

achieved using repeated additions or just bit shifts. POLLUX in

its present form cannot detect such semantic similarity, since it

leverages side-effects, which could be significantly different for

both mechanisms. In future, we plan to augment POLLUX with

symbolic execution capabilities to detect such semantic similarities.

• POLLUX’s function signature matching is O(n2), and requires

significant computation for comparing graphs with several hundred

thousand nodes. We plan to optimize it as part of future work.

8. RELATED WORK
GENERAL PURPOSE PLATFORMS. BitBlaze [46] is a binary

analysis platform that leverages static and dynamic analysis

techniques, dynamic symbolic execution, and whole-system

emulation and binary instrumentation. Phoenix [17] requires

debugging information and thus, unlike BitBlaze, is not a binary-

only analysis platform. Both BitBlaze and Phoenix can also be used

to detect changes to binary dependencies. However, they employ

heavy machinery to achieve the desired result. In contrast, POLLUX

uses light-weight and robust dynamic binary analysis techniques.

STATIC ANALYSIS. There exist several static binary analysis

platforms such as BAP [29], CodeSurfer/x86 [26], and

Jakstab [38]. CodeSurfer/x86 and Jakstab first disassemble binary

code, reconstruct call and control flow graphs, and then perform

static analysis over the reconstructed control flow. BAP lifts the

instructions to an intermediate language (IL), and then performs

analysis at the IL level. In contrast, POLLUX leverages dynamic

binary analysis to develop an execution call graph, and examines it

to determine semantic dissimilarities.

DYNAMIC ANALYSIS. POLLUX is most closely related to

BLEX [34], which observes the side effects of function execution

under a controlled randomized environment. Two functions are

deemed similar, if their corresponding side effects are similar.

POLLUX also uses the notion of similarity in side-effects, but

unlike BLEX, does not require any controlled environment. Like

BLEX, POLLUX is also robust to compiler optimizations, but

is significantly more light-weight in its approach. Additionally,

POLLUX, like Zhang et al. [50] and Nagarajan et al. [42], augments

its call graph analysis with features, such as intermediate values, to

fingerprint functions across binaries.

SYMBOLIC ANALYSIS. Several frameworks, such as

BinHunt [36], Bouncer [32], BitFuzz [31], FuzzBall [40],

and McVeto [48], operate solely on binaries. BinHunt is similar to

POLLUX in spirit, and determines semantic differences in binary

programs. However, unlike POLLUX, BinHunt detects semantic

similarity using control flow analysis using graph isomorphism

technique, symbolic execution, and theorem proving mechanisms.

Brumley et al. [28] use symbolic mechanisms to determine

whether different implementations of the same specification are

semantically similar or not.

GRAPH ISOMORPHISM. Unlike POLLUX, BinDiff [33, 35] and

BinSlayer [27] use graph isomorphism techniques that performs

extremely well in both correctness and speed if the two binaries are

similar. However, graph isomorphism, in general, does not perform

well when the change between two binaries is large.

9. CONCLUSION
We present the design and implementation of POLLUX, a

framework that leverages relevant application test cases to drive

execution through two versions of the concerned library binary,

records all concrete effects on the environment, and compares them

to determine semantic similarity for the same API invocation across

the two library versions. Our evaluation of POLLUX with 16 open-

source libraries confirms its utility, and also indicates both high

accuracy and precision even in the face of compiler optimizations.
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